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a b s t r a c t

This paper proposes tuning rules for the Simplified Dead-Time Compensator (SDTC), which is intended
to deal with stable, unstable and integrative dead-time processes. The main contribution is the proposal
of new guidelines for the tuning of the robustness filter. The new set of rules allow for the use of lower
order filters which are able to simultaneously account for closed-loop robustness and noise attenuation.
Through illustrative examples, it is shown that the proposed approach provides enhanced disturbance
rejection and noise attenuation in the control of industrial processes when compared with other recently
published works. Furthermore, the internal temperature of an in-house thermal chamber is controlled to
evaluate the applicability of the strategy on real processes.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Dead-time appears in a wide range of industrial processes
involving delayed transportation of energy, mass, information
or other processes containing time-lag associated dynamics. Al-
though classical controllers such as proportional–integral (PI) and
proportional–integral–derivative (PID) may be used when dead-
time is relatively small [1–3], their performance is usually de-
graded for long time-delay systems. Such misfortune can lead to
closed-loop instability due to an unwanted extra decrease in the
system phase [4]. One solution to this problem consists of using
dead-time compensators (DTCs) [5].

The first DTC strategy was proposed in 1957, known as the
Smith Predictor (SP) [6]. Although initially proposed as an im-
provement over classical PI or PID controllers, it presents limita-
tions regarding robustness and disturbance rejection. In addition,
it could not be used to control open loop unstable or integrative
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processes. Throughout the last decades many modifications have
been proposed to overcome these drawbacks.Most of the solutions
are intended for processes modeled by first order plus dead time
(FOPDT) or second order plus dead time (SOPDT) systems, which
are commonly found in industry [7–10]. A wide review of these
solutions is found in [4].

Some of the most recent advances in DTCs are reviewed in
this paragraph. In [11], a unified approach to deal with robustness
was presented. In [12], a two-degree-of-freedom (2DOF) design
methodwas proposed based on optimal control and desired distur-
bance rejection specifications. Several examples showed enhanced
performance and robustness when compared to previous works.
In [13], a generalized DTC was presented in order to optimize set-
point tracking and disturbance rejection. The structure is based on
both an undelayed output prediction and a 2DOF control struc-
ture. Although these recent works present good robustness and
disturbance rejection, the problem of measurement noise (mainly
in unstable processes) is not properly handled.

1.1. About the noise attenuation problem

Noise is commonly found in industrial processes andmay cause
regulatory performance degradation and increase undesired con-
trol signal variation. In [14] a design method for the Filtered SP
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Nomenclature

β Robustness-tuning parameter
ω Angular frequency
σ Robustness-free parameters
τp Unstable pole time constant
τu Integrator pole time constant
dn Discrete time delay
F1, F2 FIR filters
Gn Nominal process fast model
Hun Transfer function from measurement

noise to control signal
Hyq Transfer function from the disturbance

to the output signal
Hyr Transfer function from the reference to

the output signal
Ir Robustness index
Kr Reference filter
Ln Nominal time delay
N Measurement noise
n Order of the delay-free process model
P Real process
pi Poles of the process model
Pn Nominal process model
Q Input load disturbance
R Reference
ri Poles of the desired characteristic poly-

nomial
si Coefficients of the desired characteristic

polynomial
Ts Sampling time
U Control action
V Robustness filter
v0 . . . vn Robustness filter coefficients computed

to attend the design requirements
Y Process output

(FSP) robustness filter was proposed in order to improve noise
attenuation. In [15] a simpler solution compared to [14] was pre-
sented with better robustness, disturbance rejection and noise
attenuation. In addition, controller tuning rules were proposed for
FOPDT processes. In [8] and [16] control impairment caused by
measurement noise is mitigated by the addition of filters, which
increases the order of the equivalent controller. In [17], the DTC
from [15]was generalized formultiple delay systems, namely SDTC
(Simplified DTC). Despite good results on noise attenuation, no
further analysis was presented in order to improve disturbance
rejection properties.

1.2. Contribution

This work introduces a new tuningmethod that simultaneously
accounts for closed-loop robustness and noise attenuation for sta-
ble, unstable and integrative dead-time processes. It is shown that
lower order filters are suitable to satisfy design specifications and
provide enhanced performance when compared to more complex
controllers from recent literature. In case stronger noise attenu-
ation is required, the method allows to monotonically tune the
robustness filter while maintaining desired performance charac-
teristics. More specifically:

Fig. 1. SDTC conceptual structure.

• Three different robustness filters are presented. One to deal
with FOPDT processes and twowhich can be tuned for SOPDT
industrial processes.

• Each filter presents two adjustment parameters that allow
disturbance rejection and noise attenuation to be individually
tuned to meet a desired trade-off, while frequency domain
analysis of such characteristics is presented.

• Such nice decomposition is achieved by using different poles
in the robustness filter V (z) instead of the traditional design
of DTCs which employs multiple repeated poles.

2. Simplified dead-time compensator (SDTC)

This section presents a review of the SDTC from [17] for the case
of single-delay SISO systems. The control structure is illustrated in
Fig. 1, where Pn(z) = Gn(z)z−dn is the nominal processmodel,Gn(z)
is the nominal process fast model, dn is the nominal dead-time,
P(z) represents the real process, Kr is a constant, F1(z) and F2(z)
are finite impulse response (FIR) filters and V (z) is the robustness
filter. In order to analyze controller properties the input–output
relationships and the condition for robust stability are calculated
for the nominal case (P(z) = Pn(z))

Hyr (z) =
Y (z)
R(z)

=
KrPn(z)

1 + F1(z) + Gn(z)F2(z)
, (1)

Hyq(z) =
Y (z)
Q (z)

= Pn(z)
[
1 −

Pn(z)V (z)
1 + F1(z) + Gn(z)F2(z)

]
, (2)

Hun(z) =
U(z)
N(z)

=
−V (z)

1 + F1(z) + Gn(z)F2(z)
, (3)

Ir(ω) =

⏐⏐⏐⏐1 + F1(z) + Gn(z)F2(z)
Gn(z)V (z)

⏐⏐⏐⏐
z=ejωTs

> δP(ejωTs ), (4)

where U(z), Y (z), R(z), N(z) and Q (z) are the Z-transform of the
following signals: control action, process output, reference, mea-
surement noise, and input load disturbance, respectively; Hyr (z),
Hyq(z), and Hun(z) are the input–output transfer functions of the
closed loop in Fig. 1; Ir (ω) is defined as robustness index, Ts is the
sampling time (with 0 < ω < π/Ts) and δP(ejωTs ) is the upper
bound of the multiplicative uncertainty norm.

It is worth to note from (1) that Kr , F1(z) and F2(z) can be
tuned in order to obtain a desired set-point tracking. From (2), (3),
and (4), it can be seen that filter V (z) can be used to cancel the
effect of slow or unstable poles in the disturbance rejection Hyq(z),
to attenuate the effect of measurement noise, and/or to obtain a
desired robustness index Ir(ω).
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2.1. Tuning of Kr , F1(z) and F2(z)

The tuning of the primary controller, which is defined by Kr ,
F1(z), and F2(z) is realized in order to obtain a desired set-point
tracking for the nominal case. For this, consider F1(z) and F2(z) as
FIR filters

F1(z) = f11z
−1

+ f12z
−2

+ · · · + f1n−1z
−n+1, (5)

F2(z) = f20 + f21z
−1

+ f22z
−2

+ · · · + f2n−1z
−n+1, (6)

where n is the order of the delay-free process model Gn(z). The
coefficients of F1(z) and F2(z) are calculated using pole placement
by comparing the denominator of (1) to a desired closed-loop
reference model. In order to find the coefficients of F1(z) and F2(z),
one must solve an equation of the type Φx = y, with

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 b1 . . . 0

a1 1
... b2

...
... a1 0

... 0

an
... 1 bn b1

0 an a1 0
...  

n − 1

0 0 an   
n

0 bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f11
...

f1n−1
f20
...

f2n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s1 − a1
...

sn − an
sn+1

...

s2n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where Φ is a non-singular 2n − 1 square matrix, a1 . . . an and
b1 . . . bn are the coefficients of

Gn(z) =
b1z−1

+ b2z−2 . . . bnz−n

1 + a1z−1 + a2z−2 . . . anz−n , (8)

and s1 . . . s2n−1 are the coefficients of the desired characteristic
polynomial

1 + s1z−1
+ s2z−2 . . . s2n−1z−2n+1

= (1 − r1z−1)(1 − r2z−1) . . . (1 − r2n−1z−1). (9)

Therefore, closed-loop poles r1 . . . r2n−1, with 0 ≤ ri < 1, are
chosen in order to tune set-tracking point response. For example, if
a faster set-point is desired, than smaller values of ri can be chosen,
and vice-versa.

Note that in the case of FOPDT systems F1(z) = 0 and F2(z) =

f20 , thus the control structure reduces to the one presented in [15].
Kr is a gain calculated to yield zero steady-state error, then it
follows that

Kr =
1 + F1(1) + Gn(1)F2(1)

Pn(1)
. (10)

2.2. Tuning of the robustness filter V (z)

The SDTC robustness filter is defined as

V (z) =
v0 + v1z−1

+ · · · + vnz−n

(1 − βz−1)n+1 , (11)

where v0 . . . vn are the filter coefficients computed to attend the
design requirements and β is a user tuning parameter. The first
design requirement is to guarantee rejection of input step-like

disturbances in order to assure reference tracking at steady-state.
Therefore (2) must equal zero for z = 1, leading to

V (1) =
1 + F1(1) + Gn(1)F2(1)

Pn(1)
= Kr . (12)

Secondly, the filter is tuned to eliminate slowor unstablemodes
of the plant model Pn(z) which could appear in the disturbance
rejection response (2). Consider that pi are the poles of the pro-
cess model to be canceled, then the following equations must be
satisfied[
1 −

Pn(z)V (z)
1 + F1(z) + Gn(z)F2(z)

]
z=pi ̸=1

= 0, (13)

d
dz

[
1 −

Pn(z)V (z)
1 + F1(z) + Gn(z)F2(z)

]
z=pi=1

= 0, (14)

i = 1, . . . , n

where n is the number of undesired poles, generating a set of
n + 1 equations derived from (12), (13), and (14) to calculate
robustness filter coefficients v0 . . . vn. In case it is desired to reject
higher order disturbances and/or to follow higher order references
(ramps, parabolas, etc.), higher order filters and controllers must
be applied [18].

3. Proposed tuning rules for the robustness filter

In order to analyze the tuning of V (z), consider the following
four equations derived from (1)–(4)

Hyr (ω) =| KrM(z) |z=ejωTs , (15)

Hyq(ω) =| Gn(z) [1 − M(z)V (z)] |z=ejωTs , (16)

Hun(ω) =

⏐⏐⏐⏐V (z)M(z)
Gn(z)

⏐⏐⏐⏐
z=ejωTs

, (17)

Ir(ω) =
1

| M(ejωTs )V (ejωTs ) |
> δP(ejωTs ), (18)

where

M(z) =
Ng (z)

Dg (z)(1 + F1(z)) + Ng (z)F2(z)
z−dn

=
Ng (z)

(1 − r1z−1)(1 − r2z−1) . . . (1 − r2n−1z−1)
z−dn

with Gn(z) = Ng (z)/Dg (z). Note that the zeros of M(z) are equal
to the zeros of the process model while the poles of M(z) are the
user defined closed-looppoles for set-point tracking response, thus
it can be observed that in industrial processes M(z) has low pass
characteristics.

3.1. Analysis of the robustness filter effect

3.1.1. Disturbance rejection
One can see from (16) that it is highly desired that Hyq(ω)

approaches to zero for the frequency range 0 < ω < π/Ts.
Unfortunately, it is easy to check that such objective cannot bemet
at high frequencies (ω → π/Ts) asM(z)V (z) from (16) has lowpass
characteristics. An alternative to deal with this problem is to raise
the robustness filter V (z) gain at high frequencies by reducing its
number of poles.
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3.1.2. Noise attenuation
For industrial applications, it is important that the control signal

be the least affected by noise measurement as possible. Noise
amplification can be responsible for undesired nonlinearities in
the control loop, such as saturation. Measurement noise tends
to occur at high frequencies. Thus, in order to avoid impaired
performance due to such phenomenon, robustness filter V (z) in
(17) must present low gain for ω → π/Ts, indicating the need
for higher order V (z) filters. This condition elucidate the trade-off
between input disturbance rejection and noise attenuation when
tuning the SDTC.

3.1.3. Robust stability condition
In general the robust stability condition, given by (18), tends

to be violated at medium frequencies [4,7]. Low and medium fre-
quency specifications can be attended by low order filters, there-
fore the order of the robustness filter V (z) is not determinant to
achieve desired robustness.

3.1.4. Choice of the filter V (z) poles
Traditionally, the robustness filter is tuned using a single con-

stant parameter in the filter denominator which defines multiple
repeated stable poles. In some cases this parameter is tuned to
reach a desired robustness and disturbance rejection [19,12], while
in other cases the noise attenuation is prioritized by increasing
the filter order [7,14]. In this paper, a more flexible solution is
proposed by using different poles in the robustness filter V (z) to
meet a desired trade-off between disturbance rejection and noise
attenuation

V (z) =
v0 + v1z−1

+ · · · + vnz−n

(1 − β1z−1)(1 − β2z−1) . . . (1 − βmz−1)
, (19)

where m = n + 1. Note that, if β1 = β2 = · · · = βm = β the filter
reduces to the one in (11). Next section presents tuning rules of βi,
i = 1 . . .m, for different study cases.

3.2. Study cases

This work investigates the control of processes modeled by
following three transfer functions

P1(s) =
kn e−Lns

(τps − 1)(τus + 1)
, (20)

P2(s) =
kn e−Lns

s(τus + 1)
, (21)

P3(s) =
kn e−Lns

(τps − 1)
, (22)

where P1(s) and P2(s) are second-order plus dead-time (SOPDT)
unstable and integrative models, respectively, and P3(s) is an un-
stable first-order plus dead-time (FOPDT) model, where τp > 0
and τu > 0. Such models can represent a wide variety of industrial
processes. In [7] it was used to model the concentration of an
open loop unstable chemical reactor. The temperature control of
an aluminum thin plate is presented in [8]. Field tests of a damping
controller designed to mitigate electromechanical oscillations on
an 18-MVA diesel generating unit are presented in [9].

3.2.1. Robustness filter for FOPDT processes
The robustness filter

V1(z) =
v0 + v1z−1

(1 − β1z−1)(1 − β2z−1)
(23)

is proposed for the case of FOPDT processes (22), where the tuning
parameters are chosen as 0 ≤ β1 < β2 and 0 < β2 < 1. Parameter

β1 is tuned considering a desired noise attenuation response, that
is, if noise attenuation is not a priority then β1 can be chosen close
to zero, otherwise, close to β2. Parameter β2, on the other hand, is
chosen to obtain desired robustness characteristics. That is, as β2
gets closer to 1, the systemoverall robustness against uncertainties
will increase. On the other hand, slower disturbance rejection will
occur, and vice-versa.

3.2.2. Robustness filter for SOPDT processes
Following two filters

V2(z) =
v0 + v1z−1

+ v2z−2

(1 − β1z−1)(1 − β2z−1)
, (24)

and

V3(z) =
v0 + v1z−1

+ v2z−2

(1 − β1z−1)(1 − e−σ+Ω iz−1)(1 − e−σ−Ω iz−1)
(25)

are proposed for the case of SOPDT processes, where σ and Ω are
free parameters.

The tuning of V2(z) follows the same procedure as V1(z), that is,
initially β2 is tuned in order to obtain desired robustness charac-
teristics, then β1 is set between 0 ≤ β1 < β2.

Another option to deal with measurement noise attenuation is
to use filter V3(z). As shown in [20], complex poles can improve
the relationship between noise attenuation and robustness. In
addition, it was shown that the ratio Ω/σ can define the noise
attenuation characteristicwhere atan(Ω/σ ) ≤ π/3 is desired [20].
Filter V3(z) is tuned as follows: (i) define a desired ratioDr = Ω/σ ,
(ii) tune σ to achieve a desired robustness, (iii) set β1 between
0 ≤ β1 < 1 close to one for improved noise attenuation. In order
to illustrate the tuning, consider the plant studied in [11],

G(s) =
0.1

s(2s + 1)5
, (26)

which can be approximated by a second order integrating plant
described by the process model (21)

P(s) =
0.1e−5s

s(5s + 1)
. (27)

Using a sampling time of Ts = 0.2 s, the zero-order-hold
method yields the discretized plant

P(z) =
0.00039472(z + 0.9868)

(z − 1)(z − 0.9608)
z−25. (28)

Consider Dr relation in robustness filter (25) is kept fixed at
tan(π/3), then noise attenuation pole β1 varies in the range be-
tween 0 ≤ β1 < 1. Fig. 2 shows the relation between Hun(ω)
(17) and β1. From Fig. 2 it is possible to notice that the value of
Hun(w)|w→π/Ts gets lower as β1 increases, thus obtaining a desired
measurement noise gain in the control signal at high frequencies.

4. Simulation results

In order to evaluate the performance of the proposed tuning
rules, following four examples from recent literaturewere used. All
simulations were compared to recently published papers that pro-
pose tuning for dead-time processes. In order to clearly separate
the effects of the input disturbance and of the noise measurement
in the output response, the noise is only added in the last seconds of
simulation, that is, when the system reaches steady-state, leading
to a better analysis.
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Fig. 2. Relation between |Hun(w)| and β1 with Dr = tan(π/3) for (28).

4.1. Example 1

Consider the illustrative process (26)–(28). Two SDTC con-
trollers are tuned for this example. In order to achieve similar
set-point response with compared controllers from [12] and [21],
primary controller was tuned with F1(z) = −0.436z−1, F2(z) =

105.9 − 101.3z−1 and Kr = 4.5906 for both SDTC.
Attenuation of high frequency modes along with fast distur-

bance rejection are desired for this example. As aforementioned,
complex poles exhibit good balance between noise attenuation
and robustness, thus initially leading to the adoption of (25) as
the robustness filter to the SDTC1. By following specified tuning
rules from Section 3.2.2, ratio Dr = tan(π/3) was defined, then
σ = 0.0842 was chosen. Lastly, β1 = 0.87 ≤ 1 was set, leading to

V (z) =
16.03 − 31.06z−1

+ 15.05z−2

(1 − 0.87z−1)(1 − 1.82z−1 + 0.845z−2)
. (29)

A second and more robust proposal is made for the SDTC2 by
choosing β1 = 0.97 and β2 = 0.91 for (24), obtaining

V (z) =
22.76 − 44.31z−1

+ 21.56z−2

(1 − 0.97z−1)(1 − 0.91z−1)
. (30)

Fig. 3 shows time responses to a unit step reference. At t = 50
s a negative unity step disturbance is applied at the process input.
Furthermore,white noisewith zeromean and a variance of 0.001 is
added to the measured output in the last 10 s of simulation. Notice
that while possessing faster regulation response than controllers
proposed by [12] and [21], the SDTC maintained similar noise
attenuation.

Suppose now that due to unmodeled dynamics, both the gain
and time constant of (27) are 20% higher than the nominal case.
Fig. 4 shows the results for this situation. Similarly to the nominal
case, SDTC with uncertainty exhibited fast regulation response
with only small oscillations.

A second uncertainty case is then considered, with gain 20%
higher and time constant 20% lower than the nominal model.
Results for this case are presented in 5. In this situation, only the
SDTC2 and the controller from [12] were able to remain stable,
with slightly better response from the proposed controller, which
presented faster disturbance rejection.

4.2. Example 2

Consider the unstable SOPDT process recently studied in [13]

P(s) =
2

(10s − 1)(2s + 1)
e−5s. (31)

Fig. 3. Nominal system responses for example 1. (a) Output signals. (b) Control
signals.

Fig. 4. Perturbed system responses for example 1. (a) Output signals. (b) Control
signals.

The discrete-time model Pn(z) with long dead-time is obtained
using a sampling time of Ts = 0.1 s is given by

Pn(z) =
0.00049342(z + 0.9868)
(z − 1.01)(z − 0.9512)

z−50. (32)

For this case, two SDTC controllers were designed. In order to
obtain fast set-point tracking, the primary controller of both are
tuned with F1(z) = −0.8904z−1, F2(z) = 3.433 − 3.268z−1, and
Kr = 0.1102.
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Fig. 5. Perturbed system responses for example 1 with gain 20% higher and time
constant 20% lower than the nominal model. (a) Output signals. (b) Control signals.

In addition, both controllers employed (25) as the robustness
filter model with σ = 0.45, Ω = 1.15. Fast disturbance rejection
was prioritized for the SDTC1, thus β1 = 0, leading to

V (z) =
296.3 − 576.1z−1

+ 279.9z−2

1 − 0.522z−1 + 0.4057z−2 . (33)

In order to improve noise attenuation characteristics while
keeping faster disturbance rejection than the controller from [13],
β1 was increased for the SDTC2, obtaining the following filter

V (z) =
34.06 − 66.26z−1

+ 32.21z−2

(1 − 0.9z−1)(1 − 0.522z−1 + 0.4057z−2)
. (34)

Fig. 6 shows the relation |Hun(w)|. It is possible to see that the
increase in β1 for the SDTC2 is an effective design procedure that
improves the controller capacity to deal with noise (which occurs
at high frequencies).

Two control tests were executed in order to evaluate the SDTC
performance. A unity step-change was applied to the system at
time t = 0 s and a negative constant load disturbance ofmagnitude
0.2 entered the control signal at time t = 60 s. In addition,
measurement white noise with zero mean and a variance of 5 ×

10−5 was added to the output in the last five seconds of simulation.
Fig. 7 shows the results for the nominal case. As it can be seen,

both SDTC controllers exhibit faster disturbance rejection than the
controller from [13]. Note that, as expected, the SDTC2 achieved the
best noise attenuation among all three controllers, making it the
most appropriated solution for practical industrial applications.

As in [13], consider now that the process time delay and pro-
portional gain are actually 5% larger while the stable pole is 5%
smaller than the obtained model. Integral of the square error (ISE)
for this situation is shown in Table 1, oncemore demonstrating the
improvement yielded by the proposed strategy.

4.3. Example 3

The following process from [12,22] is studied in this example

P(s) =
e−4s

s(s + 1)
. (35)

Fig. 6. Noise sensitivity |Hun(w)| for example 2.

Fig. 7. Nominal system responses for example 2. (a) Output signals. (b) Control
signals.

Using a sampling time Ts = 0.2 s, the discrete timemodel of the
process is given by

Pn(z) =
0.018731(z + 0.9355)
(z − 1)(z − 0.8187)

z−20. (36)

For comparison purposes, this case includes the traditional
SDTC with repeated filter poles, namely SDTC2. The proposed
tuning rules are applied in the design of the SDTC1. The primary
controllers and robustness filters for both SDTC1 and SDTC2 were
designed to yield reference tracking and disturbance rejection
performances similar to that presented in [12], thus F1(z) =

−0.02328z−1, F2(z) = 7.582 − 6.616z−1, and Kr (z) = 0.9654 for
both controllers. Disturbance rejection filters were tuned accord-
ing to (24) and (11), with β1 = 0.87 and β2 = 0.965 for the SDTC1,
and β = 0.91 for the SDTC2, leading to

V (z) =
1.516 − 2.733z−1

+ 1.221z−2

(1 − 0.87z−1)(1 − 0.965z−1)
, (37)
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Table 1
ISE for examples and experiment.

Example 1 Example 2

SDTC1 SDTC2 Ref. [12] Ref. [21] SDTC1 SDTC2 Ref. [13]

Nominal 10.1552 11.7367 12.8919 10.6036 9.8132 9.6574 11.7023
Perturbed 1 10.0866 11.6830 12.9917 10.5032 10.0387 9.7847 11.7279
Perturbed 2 – 11.3755 12.3504 – – – –

Example 3 Example 4 Experiment

SDTC1 SDTC2 Ref. [12] SDTC Ref. [12] SDTC Ref. [13]

Nominal 7.2601 7.6869 7.4178 2078.6 2100.2 – –
Perturbed 8.8380 9.7113 8.8668 2273.8 2288.6 130.7141 141.1987

Fig. 8. Nominal system responses for example 3. (a) Output signals. (b) Control
signals.

and

V (z) =
0.2283 − 0.4113z−1

+ 0.1838z−2

(1 − 0.91z−1)3
, (38)

for SDTC1 and SDTC2, respectively.
Control results for the SDTC1, the SDTC2 and the controller

proposed by [12] are shown in Fig. 8. A unit step reference was
introduced at time t = 0 s, while a step-like disturbance of −0.1
was added to the control signal at time t = 65 s. For analysis
purposes,measurementwhite noisewith zeromean and a variance
of 0.001 was also added from time t = 120 s to the end of
the experiment. Furthermore, Fig. 9 shows the results of a second
experiment performed in order to evaluate the system robustness
in the presence of a 20% error in the process delay model.

From Figs. 8 and 9 it is possible to notice that the SDTC1 and
the controller proposed by [12] have similar output signals, with
slightly better disturbance rejection achieved by the SDTC1. In
addition, SDTC1 was able to keep good noise attenuation with
faster response than the traditional SDTC2.

4.4. Example 4

Consider the following first-order unstable process with time-
delay of the chemical reactor concentration studied in [12,15],

P(s) =
3.433e−20s

101.1s − 1
. (39)

Fig. 9. Perturbed system responses for example 3. (a) Output signals. (b) Control
signals.

Using a sampling time Ts = 0.5 s, the discrete model of the
process is given by

Pn(z) =
0.016689

z − 1.00486
z−40. (40)

In order to obtain similar set-point tracking response with that
from [12], the primary controller is tuned with F1(z) = 0, F2(z) =

1.742, and Kr (z) = 1.451.
In order to achieve fast disturbance rejection robustness filter

(23) with β1 = 0 and β2 = 0.986 was chosen, yielding

V (z) =
4.016 − 3.996z−1

1 − 0.986z−1 . (41)

A step reference is applied to the system at time t = 0 s
while a negative input disturbance of magnitude 1 is applied at
time t = 600 s. Additionally, white noise with zero mean and a
variance of 0.1 is added to the measured output in the last 200 s
of simulation. Results for this case are shown in Fig. 10. Consider
now the process delay is actually 30% larger than themodeled one.
Fig. 11 shows the results for this situation.

Results show that the SDTC was able to achieve faster distur-
bance rejection for both nominal and perturbed cases. Further-
more, noise attenuation is superior to the controller from [12]. Note
that such results are obtained by using simple gains in the primary
controller, and a monotonically tuned robustness filter.
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Fig. 10. Nominal system responses for example 4. (a) Output signals. (b) Control
signals.

Fig. 11. Perturbed system responses for example 4. (a) Output signals. (b) Control
signals.

5. Experimental tests

The proposed strategy was applied for the temperature con-
trol of an in-house thermal chamber, which is shown in Fig. 12.
The temperature inside the chamber is controlled by an electrical
resistor which provides heat and is situated in an air reservoir
right below the acrylic dome. The reservoir is separated only by
two openings which allow air to circulate. Additionally, a fan with
constant rotational speed provides the internal air flow. This set
of actuators is a source of delay and nonlinearities in the system.
The control input is limited by the resistormaximumpower,which
varies in a scale from 0 to 100%, thus the saturation model is
included in the control loop, as shown in the control diagram in

Fig. 12. In-house thermal chamber.

Fig. 13. Thermal chamber control diagram.

Fig. 13, where subsystem S(z) = F1(z) + Gn(z)(F2(z) − V (z)z−dn )
is defined to obtain an internally stable implementation of the
predictor for any process model [17]. The power delivered to the
heating resistor is controlled by the duty cycle of a switching
power supply. Furthermore, there are two portholes which can be
manually opened in order to disturb the internal temperature by
interaction with the external environment. This system can repre-
sent a wide variety of industrial and commercial applications, such
as thermal control of neonatal incubators and industrial furnaces.

The SDTC is implemented on a supervisory computer. The con-
trol signal is sent via Universal Serial Bus (USB) cable to a driving
circuit through a Nidaq-USB6009 data acquisition card manufac-
tured by National Instruments. In order to close the control loop,
a temperature sensor provides the actual temperature inside the
chamber to the acquisition card through an analog digital con-
verter (ADC).

An open-loop identification step test was performed by apply-
ing maximum power to the electrical resistor. The temperature
response can be view in Fig. 14. Practical applications with slow
time-constant can be approximated by integrative models [5].
Besides containing less identification parameters, using an integra-
tive model allows to reduce the amount of time required for the
identification test, since it is not necessary to reach steady-state
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Fig. 14. Temperature response for process identification.

regime. Thus, by using the two-parameter method from [23] the
plant was approximated by

P(s) =
0.6
s

e−2s, (42)

which was discretized by using the zero-order-hold method with
Ts = 0.2 min, obtaining

P(z) =
0.12
z − 1

z−10. (43)

The SDTCwas tuned to produce fast set-point tracking response
(1) with a time constant of two minutes. Thus, the primary con-
troller was tuned with F1(z) = 0, F2(z) = f20 = 0.8333, and Kr =

0.8333. To provide good disturbance rejection and appropriate
noise attenuation, the disturbance filter is given by (23)

V (z) =
0.2042 − 0.2z−1

(1 − 0.95z−1)(1 − 0.9z−1)
. (44)

Fig. 15 shows experimental results for a step change on the set-
point from20.7 ◦C to 26 ◦C. In order to assess controller robustness,
portholes remained opened from t = 30 min to t = 40 min. For
comparison purposes, the control method given in [13] is also used
for implementation with λ = 0.9, λf = 0.96, λs = 0.925, m = 1,
nh = 0, nd = 2, nf = 2, β1 = 2/(1 − λf ), and β2 = 1 − β1.

Note that both controllers were able to follow the reference
without overshoot, and present similar response over the time
while the portholes remain open from t = 30 min to t = 40
min. However, when the portholes were closed at t = 40 min, it
is possible to note that, differently from the controller from [13],
the SDTC was capable to reach the set-point once again twenty
minutes prior to the compared controller, which kept oscillating
for a longer period.

6. Conclusion

A new set of tuning rules for a simplified dead-time compen-
sator focusing on industrial process has been proposed in this
paper. The set of rules for the poles of the robustness filter has
successfully demonstrated its advantages for both robust tuning
and measurement noise attenuation. Not merely the proposed
tuning rules achieved superior results compared to its classical
counterpart, it has also shown to be simpler than recent dead-time
process control strategies in the literature [13,12].

In general, simplicity is pivotal for controller design implemen-
tation and understanding of the tuning rules, which are character-
istics clearly achieved by the proposed controller. The variety of
simulation examples from different applications [11,12,22,24,13]
validates the SDTC versatility, being able to control stable, unsta-
ble, and integrative processes even in the presence of modeling
uncertainties. The experimental results presented satisfactory per-
formance on the control of a thermal chamber system subjected
to modeling mismatch, external disturbance, and measurement
noise.

Fig. 15. Experimental results. (a) Output signals. (b) Control signals.
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